The Symmetry of a Simple Optimization Problem in Lasso Screening

نویسندگان

  • Yun Wang
  • Peter J. Ramadge
چکیده

Recently dictionary screening has been proposed as an effective way to improve the computational efficiency of solving the lasso problem, which is one of the most commonly used method for learning sparse representations. To address today’s ever increasing large dataset, effective screening relies on a tight region bound on the solution to the dual lasso. Typical region bounds are in the form of an intersection of a sphere and multiple half spaces. One way to tighten the region bound is using more half spaces, which however, adds to the overhead of solving the high dimensional optimization problem in lasso screening. This paper reveals the interesting property that the optimization problem only depends on the projection of features onto the subspace spanned by the normals of the half spaces. This property converts an optimization problem in high dimension to much lower dimension, and thus sheds light on reducing the computation overhead of lasso screening based on tighter region bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lasso Screening Rules via Dual Polytope Projection

Lasso is a widely used regression technique to find sparse representations. When the dimension of the feature space and the number of samples are extremely large, solving the Lasso problem remains challenging. To improve the efficiency of solving large-scale Lasso problems, El Ghaoui and his colleagues have proposed the SAFE rules which are able to quickly identify the inactive predictors, i.e....

متن کامل

An Equivalence between the Lasso and Support Vector Machines

We investigate the relation of two fundamental tools in machine learning, that is the support vector machine (SVM) for classification, and the Lasso technique used in regression. We show that the resulting optimization problems are equivalent, in the following sense: Given any instance of an l2-loss softmargin (or hard-margin) SVM, we construct a Lasso instance having the same optimal solutions...

متن کامل

Screening Rules for Overlapping Group Lasso

Recently, to solve large-scale lasso and group lasso problems, screening rules have been developed, the goal of which is to reduce the problem size by efficiently discarding zero coefficients using simple rules independently of the others. However, screening for overlapping group lasso remains an open challenge because the overlaps between groups make it infeasible to test each group independen...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Solving Critical Path Problem in Project Network by a New Enhanced Multi-objective Optimization of Simple Ratio Analysis Approach with Interval Type-2 Fuzzy Sets

Decision making is an important issue in business and project management that assists finding the optimal alternative from a number of feasible alternatives. Decision making requires adequate consideration of uncertainty in projects. In this paper, in order to address uncertainty of project environments, interval type-2 fuzzy sets (IT2FSs) are used. In other words, the rating of each alternativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.06014  شماره 

صفحات  -

تاریخ انتشار 2016